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We are living in unbelievable times with innovations in science, medi-
cine, business, public policy, and the environment exploding all over 
the place. “Our civilization,” posited Peter Braunfeld of  the Univer-
sity of  Illinois, “would collapse without mathematics.” Our students 
need quantitative literacy to understand how things work and how new 
things could be made to work. 

I am so proud of  this year’s math journal because it reflects our girls 
deep understanding of  the underpinnings of  the math they have stud-
ied this year in their AP Calculus course. Thank you to Mrs. Goldie 
Feinberg, their teacher and our Math Chair, for brilliantly giving our 
girls the practical applications to conceptual mathematics.

Ms. Estee Friedman
Principal
General Studies

Message from the Principal





Foreword

Our students spend many years studying mathematics. In elementary 
school they focus on arithmetic and number sense, and they move on 
to tackling deeper mathematical concepts in high school. 

What are they left with after all the years of  exploring, learning and 
deciphering?

In Math Apps, the AP Calculus class shares some of  the applications 
they found related directly to the high school mathematics they studied 
the past few years. Each student researched a math topic and discov-
ered how the topic is essential in the fields of  science, economics, mu-
sic, art, computer science or technology. This little book is only a tiny 
glimpse into how applied math shapes many aspects of  our daily lives. 

Mrs. Goldie Fienberg
Chair, Math Department 
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As we learned in class, the derivative of  a function is the slope of  
the line tangent to the curve, or in simpler English the rate of  change 
of  a function at any instant. As seen in the graph, as the function 
increases, the derivative is positive and and slowly getting smaller, and 
as the graph reaches a maximum it has a derivative of  zero. On the 
other hand, as the graph begins declining, its derivative is negative and 
slowly gets larger. 

Derivatives are used to help understand how numbers change 
in many different arenas, specifically economics. For example, total 
utility of  a product is the amount of  satisfaction the product gives a 
person. Marginal utility is the additional utility a person receives from 
consuming one more unit of  that product. Marginal utility describes 
the rate of  change of  total utility, hence marginal utility is the derivative 
of  total utility. For example, after drinking three water bottles, the 
marginal utility of  the fourth water bottle is the amount of  additional 
satisfaction gained from the fourth bottle of  water. When total utility 
reaches a maximum point and then begins to descend, the marginal 
utility, the derivative, is zero. This makes sense in both the context of  
economics and calculus; when the total utility is zero, a person is no 
longer gaining any satisfaction from the product, hence the marginal 
utility is zero. In the 
example of  water, after a 
person runs a marathon 
he enjoys the first water 
bottle very much. Slowly, 
each water bottle gives 
him less enjoyment until 
he is no longer thirsty. 
At this point, the total 
utility of  water reaches a 
maximum as the runner 

Aviva Attar

When Another Water Bottle 
Doesn’t Help
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has gained all the satisfaction from drinking water he can possibly 
achieve. The derivative, or marginal utility, is zero because drinking 
another bottle of  water will not give the runner any more satisfaction. 
If  the runner would continue drinking more bottles of  water, he would 
eventually get sick. Getting sick shows a negative derivative as the 
enjoyment is negative. Additionally, the more water bottles the runner 
drinks after getting sick the more rapidly he will get sick. As seen here, 
math is everywhere! Even though we learned about derivatives in 
calculus, it can be applied to economics and more!
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Have you ever wondered how ships navigate the seas without 
getting completely lost? The ocean is a vast, never-ending entity. Winds 
and currents can easily pull vessels off  course, and without the right 
tools, one might find themselves in America instead of  India, like they 
originally planned. 

Many centuries ago, sailors used a process called dead reckoning 
in order to determine, as best they could, where their ships would 
end up at the closing of  their voyage. They would base their location 
off  the port on the left, attempting to maintain an accurate record 
of  the distance traversed and the direction sailed. Just the slightest 
miscalculation, and they could end up missing the miniscule island 
they set sail for by miles.

 A few inventions like the sextant and sailing clocks made things 
easier, but these devices weren’t foolproof, and had their own kinks 
that prevented them from being completely reliable. And so, there 
was a missing piece in the puzzle of  sailing that needed to be filled. 
Fortunately, a Scottish mathematician was hard at work in his castle 
inventing logarithms. John Napier spent twenty years coming up with 
what were known as Napier’s logs. The way these logs were set up was 
not the way they are used to today. 1

Napier’s logs looked like this: y=lognap(x). In 1614 he produced a 
book called “A Description of  the Wonderful Table of  Logarithms” 
in which he details his work on developing logs. His method was the 
first of  its kind, but still needed work, as doing every computation 
took more time and effort than most people had. When Napier’s book 
was published, famed Mathematician, Henry Briggs, had read it, and 
immediately journeyed from London to Edinburgh to tell Napier how 
to simplify his method. He suggested John switch the form into the 
one we are so used to today. Briggs and Napier agreed that things 

1 T. (2012, October 11). How does math guide our ships at sea? - George Christoph. Retrieved June 
07, 2016, from https://www.youtube.com/watch?v=AGCUm_jWtt4

                                                  

A lo(n)g Journey
Sarah Farber
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would be much easier if  instead of  the “nap” base, a base of  ten would 
be used, and a log of  “1” would equal to zero. 2 

Logarithmic equations today look like this: logaN=x. The letter 
“a” represents the base which is being raised to a certain power, “x.” 
“N” is the outcome of  that pairing of  “a” and “x”. The logarithmic 
function very simply serves to solve the issue posed when one does 
not know what power will produce a certain outcome. Because we 
have calculators today, we 
do not appreciate the 
function of  logs in dealing 
with large numbers, as we 
deal with their exponents 
instead of  the numbers 
themselves. However, 
since calculators were 
not always around, the 
invention of  logarithms 
was vital to those sailors 
who couldn’t do these 
calculations with a few 
clicks of  some small buttons.3

Sextants and clocks were very expensive due to their hand-crafted 
nature, so most sailors could not afford these navigational tools 
and had to figure out their location using intense lunar calculations 
which would take hours to do. The invention of  logs allowed for the 
appropriate calculations to be done quickly and easily, in order for 

2  Clark, K. M., & Montelle, C. (2011, January). Logarithms: The Early History of  a Familiar Function 
- John Napier Introduces Logarithms. Retrieved June 07, 2016, from http://www.maa.org/press/
periodicals/convergence/logarithms-the-early-history-of-a-familiar-function-john-napier-introduces-log
arithms                                                

3  Clark, K. M., & Montelle, C. (2011, January). Logarithms: The Early History of  a Familiar Function 
- John Napier Introduces Logarithms. Retrieved June 07, 2016, from http://www.maa.org/press/
periodicals/convergence/logarithms-the-early-history-of-a-familiar-function-john-napier-introduces-
logarithms

4 T. (2012, October 11). How does math guide our ships at sea? - George Christoph. Retrieved June 
07, 2016, from https://www.youtube.com/watch?v=AGCUm_jWtt4
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sailors to determine their positions at sea. 4

Thankfully, due to the creation of  modern technology, like GPS 
satellite operated systems, ships are able to easily figure out which tiny 
speck they are in the gargantuan ocean, and how to get from point A 
to point B without any mishaps. Even though we do not need to use 
logarithms at sea anymore, we still appreciate the part they played in 
many of  the most incredible voyages and the role they have taken on 
in other aspects of  our lives. You don’t need to be a sailor to appreciate 
a good logarithm!
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Searching For A Sine
Draisy Friedman

If  you’d asked me in 11th grade, I never would have said 
trigonometry had any use beyond answering increasingly far fetched 
questions on math tests. Yet some quick research reveals a field in 
which trigonometry’s uses are limitless: oceanography, the study of  
tides. By plotting tides along a sine curve, oceanographers can predict 
how a tide behaves and when low and high tide will occur.1

As I learned in trigonometry, all sine functions have an amplitude and 
a period. Amplitude refers to the magnitude, or height of  the “wave” 
of  a sine function. Period means the distance it takes for the function 
to complete one full cycle and repeat itself. Different variations of  the 
sine function have different amplitudes and periods.

Because high and low tide tend to occur in periodic patterns, sine 
curves are perfect for modeling tides at a specific location. For example, 
let’s assume that the height of  the water at a New York coast is 4 feet 
at midnight, and the height of  the water at x hours after midnight can 
be found using 4sin(2x+π )+4. To find the height of  the water at high 
tide, all one has to do is determine the amplitude of  the function and 
add that to 4. The amplitude of  a sine function is the number before 
sine, so the amplitude of  this function is 4. Therefore, at high tide the 
water along this New York coast is 8 feet high. To find low tide, all 
you have to do is subtract 
the amplitude from the 
original height, meaning 
the water on the coast is 0 
feet high at low tide.

Trigonometry can also 
be used to figure out how 
often high tide will occur. 
All you have to do is look 
at the period. To find the 

1 http://www.dummies.com/how-to/content/measure-tidal-change-using-a-trigonometry-graph.
html, Mary Jane Sterling
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period of  a sine function, you divide 2π by the absolute value of  the 
coefficient of  x. Therefore, on this coast high tide occurs every π hours.

Of  course, this is not a perfect method. Tides change depending 
on the gravitational pull of  the sun and moon, so there is no universal 
function that can predict tides at every location during every time 
frame. However, if  you only need a general estimate of  high and low 
tide times, sine functions may be the tool you have been searching for. 
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Groundbreaking Exponentials
Leah Genkin

In an exponential function, some constant b is raised to the power 
of  x to get y. It is written as y=bx. The log function is used to express an 
exponent in a different form than y=bx. The log function is called  the 
inverse of  the exponential function so the x-value of  the exponential 
function becomes the y-value in the log function, and the y-value of  
the exponential function becomes the x-value in the log function. 
y=bx is exponential 
so the log function, its 
inverse, will be  x=by 
which is commonly 
written as logbx=y. The 
common base for the 
logarithmic scale is a 
base of  10 (log10x=y). 
This means that 10 is 
raised to some y-value 
to get an x. Just like 
in an exponential 
function, in a 
logarithm function, as 
x increases, f(x) also 
increases, but more slowly than in an exponential function. Therefore, 
the log function is used to measure things that have a great variety of  
sizes, like earthquakes.1  

In 1935, Charles Richter used the logarithmic function to develop 
the Richter scale. When an earthquake occurs, we use this scale to 
measure its magnitude of  how much the ground shook and how much 
energy was released. The scale runs from 1-10, with one the least in 
magnitude and ten the greatest.2 

1 http://study.com/academy/lesson/using-the-richter-scale-to-measure-earthquakes.html
2http://www.montereyinstitute.org/courses/DevelopmentalMath/TEXTGROUP-1-19_

RESOURCE/U18_L4_T2_text_container.html
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Seismic waves, the vibrations as a result of  the earthquake, are 
measured through an instrument called seismographs. When the 
ground shakes, the seismograph records the different amplitudes 
of  the vibrations. The logarithm of  the amplitude is then taken to 
determine the magnitude of  the earthquake on the Richter scale.3 So 
an earthquake with a wave amplitude of  392, has a magnitude of  log 
392 (which equals 2.6) on the Richter scale.

Since the scale uses the logarithmic function, an increase in one 
point is really ten times more ground shaking. So an earthquake with 
magnitude 3, which is just two steps higher than 1, is really 100 times 
more ground shaking than an earthquake with magnitude 1. 

3 http://earthquake.usgs.gov/learn/topics/measure.php
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1 Dictionary.com
2 Dictionary.com
3 https://prezi.com/liexwdzq2fzn/calculus-in-roller-coasters/
4 https://prezi.com/liexwdzq2fzn/calculus-in-roller-coasters/
5 https://prezi.com/liexwdzq2fzn/calculus-in-roller-coasters/

When engineers construct 
a roller coaster model, they 
use calculus to determine the 
speed, acceleration, slope, 
and critical points of  the ride. 
The roller coaster function 
is like the position graph 
of  an object, depicting the time and position at every point on the 
graph. The velocity is the derivative of  the roller coaster. The velocity 
curve depicts the speed of  the roller coaster “in a given direction at 
every point.” 1 The derivative of  the velocity is the acceleration. The 
acceleration curve depicts “increase in the rate or speed of  the ride.” 2

Engineers must find the velocity at the maximum height to make 
sure the g-force, the pull opposite of  gravity, is safe for the riders at 
that point.3 The maximum height is when the slope of  the tangent 
line to the roller coaster is zero and the roller coaster changes from 
increasing to decreasing. 

The roller coaster must be continuous and differentiable for the 
ride to operate.4 Logically, it must be continuous, without any breaks in 
the tracks. It must also be differentiable, without any cusps, so the cart 
of  the roller coaster can flow without getting stuck. 

In addition, when engineers construct the ups and downs of  the 
roller coaster, they must take into account the acceleration of  the 
ride, for the safety of  the riders. Engineers take the derivative of  
the position to get the velocity. The derivative of  the velocity will 
be the acceleration at that point. Then, they determine whether the 
acceleration is appropriate for that point in the ride. 5  

Calculus: The Ride of  my Life
Tziporah Hirsch
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A roller coaster is usually a piecewise function, constructed with 
a few different functions. Every function must be continuous and 
differentiable at the points where the functions meet. Possible functions 
are parabolas (ax^2+bx+c)6, for the “drops” of  the roller coaster, or 
various elliptic equations, for the loops of  the roller coaster. The loops 
of  a roller coaster cannot be fully circular, because the speed will have 
to be extremely fast and the g-force will not be able to withstand the 
speed. The shape of  the loop is a clothoid loop,which is shaped like a 
teardrop. In a clothoid loop, the radius is widest in the middle of  the 
loop, and gets smaller as it gets closer to the ends of  the loop. 7

Roller coaster engineers must determine the slopes of  the roller 
coaster hills to make an accurate model possible for the construction 
crew to build. The slope will also allow the engineers to determine the 
speed at specific times throughout the roller coaster. The roller coaster 
must be at a certain speed to be able to complete a loop. The speed is 
dependant on the loop. 8 

Calculus is a very important feature in creating a fast, safe, and 
enjoyable roller coaster. 

6 http://www.pleasanton.k12.ca.us/avhsweb/james/calculus/End%20of%20Year/Projects%20
and%20other%20Stuff%20New/Roller%20Coaster%20Project.pdf
7 https://prezi.com/liexwdzq2fzn/calculus-in-roller-coasters/
8 https://prezi.com/liexwdzq2fzn/calculus-in-roller-coasters/
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1 http://www.mathopenref.com/trigsinewaves.html

                                                  

We learned about 
sine and cosine graphs 
to the right in this year’s 
AP Calculus Class. 
Transformations of  
a graph shift and 
change the picture. 
The amplitude of  a 
function is half  the distance between the minimum and maximum 
points. The frequency of  the graph is the number of  full sine curves 
one can see in 2π radians. Transforming the sine function will change 
the amplitude and frequency but will preserve the shape of  the sine 
curve.

An application of  the sine curve can be found in sound. When 
one hears a sound, the waves that make up the sounds are comprised 
of  sine and cosine graphs. “Sound waves are very quick changes in 
air pressure which your ear interprets as sounds. For very pure single 
tones, a plot of  air pressure against time would show them to be sine 
waves.” 1 Different sounds are heard based on the amplitude and the 
frequency of  the wave. The frequency helps interpret the pitch of  the 
sound, while the amplitude dictates the loudness. 

Beethoven was one of  the most prominent musicians who ever 
existed, despite the fact that he was deaf  for 
most of  his career. How was he able to make 
such beautiful music if  he could not hear? The 
sound patterns of  his music were the key to his 
success. For example, his famous Moonlight 
Sonata begins with repetitive notes in sets 
of  three. Although repetitive patterns seem 
uncomplicated, every triplet is made up of  

Ode to Trigonometry
Ruti Koenig
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complex calculations using the sine curve’s frequency and amplitude. 
Beethoven once said “I always have a picture in my mind when 
composing and follow its lines.” 2

The pitch frequencies of  different notes form a geometric series. 
The sine wave of  each note can be determined, allowing a person to 
see the musical patterns that Beethoven could not hear. Beethoven 
understood that when certain notes are played together they sound 
amazing, however, other notes sound awful. When the difference of  
the frequencies have a constant number the music sounds pleasing 
to the ear, which is called consonance. On the other hand, when the 
difference of  the frequencies is not a constant number, the notes 
sound rough, full of  tension and unpleasant to the ear, which is called 
dissonance. Beethoven used both of  these techniques in his music 
depending on the mood of  his piece.

2  St. Clair, Natalya. (2014, September). Music and math: The genius of  Beethoven 
[Video file]. Retrieved from http://ed.ted.com/lessons/music-and-math-the-genius-of-beethoven-

natalya-st-clair.
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In today’s world we can all admit that computers have largely 
impacted our lives, but do most of  us really know anything about how 
they work? We hear things like ones and zeros or ons and offs but what 
do they really mean?

The binary number system is a base two number system that only 
makes use of  two digits: 0 and 1. This 
is important because machines cannot 
count numbers on their fingers (like 
many humans tend to do) but they 
can understand the difference between 
when a switch is open or closed or when 
an electrical flow is on or off.

Using a base two system is not new. 
Aboriginal people in Australia counted 
by two and many African tribes “sent 
complex messages using drum signals 
at high and low pitches (1).” In more 
modern times, binary was used again in 
Morse code which uses dots and dashes 
to represent the alphabet. 

In our minds, we count using a base 
ten number system. However, it is not 
hard to convert into a base two number 
system. In first grade we learned about 
the ones column, the tens column and so on. In math class, we learned 
how to reorient the values of  our number columns. For binary, we 
replaced the tens column with a twos column and the hundreds column 
with a fours column (See chart).

Today, digital computers operate based on two possible states: on 
and off. On is represented by the number one and literally means that 
an electrical current is present. Off  is represented by the number zero 

1 Redshaw Kerry. “Binary - So Simple a Computer Can Do It.”kerryr.net. n.p. n.d. Web. 30 May 2016.

Computers 101
Rivky Kreiser

Binary
0
1
10
11

100
101
110
111

1000
1001
1010
1011

Decimal
0
1
2
3
4
5
6
7
8
9
10
11
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and literally means that an electrical current is absent. “Each binary 
digit, or bit, is a single 0 or 1, which directly corresponds to a single 
‘switch’ in a circuit. Add enough of  these ‘switches’ together, and you 
can represent more numbers (2).”

But why can’t computers use a base ten number system? The answer 
is simple. The more possibilities in existence, the more complicated 
something becomes. Furthermore, modern switches are not capable 
of  holding ten possibilities, but they are very capable of  holding two 
possibilities. So here we are today!

2 Blinnikov Ilyosha. “Why Computers Use Binary.” Nookkin.com. n.p. 15 May 2010. Web. 30 May 2016.                                                   
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1 http://www.livescience.com/37704-phi-golden-ratio.html
2 https://www.mathsisfun.com/definitions/sequence.html
3 http://www.goldennumber.net/art-composition-design/

The golden ratio is a number found by dividing a line segment into 
two parts such that the longer segment divided by the smaller segment 
is equal to the whole line segment divided by the longer segment. 
This is something in the golden ratio. So a divided by b is equal to a 
plus b, divided by a, which equals 1.6180339887498948420 …1 It is 
symbolized by phi, the Greek letter. 

In class we learned 
about sequences, or a list of  
numbers in a special order.2 
One of  the sequences 
we learned about was the 
Fibonacci sequence. The 
Fibonacci sequence is: 0, 1, 
1, 2, 3, 5, 8, 13, 21, 34, and 
so on. The next number 
of  the Fibonacci sequence 
is found by adding the two 
numbers that come before it. For example 0 plus 1 equals 1, and 1 plus 
1 is two. 

The ratio of  any  two consecutive numbers in the Fibonacci 
sequence are slowly approaching the golden ratio. 3/2 is 1.5 and 13/8 
is 1.625, and so on, slowly getting closer and closer to the golden ratio, 
1.6180339887498948420... 

A contemporary of  Da Vinci, Luca Pacioli said, “Without 
mathematics there is no art.”3 Tools, such the golden ratio can help 
create beautiful works of  art and architecture. The golden ratio creates 
images and structures pleasing to the eye and therefore has been used 
for centuries. 

For example, The Mona Lisa is beautiful, and her face was created 

Beautiful Math
Shira Nabatian
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by Da Vinci, around the golden ratio.
Da Vinci also created the “Last Supper”  

based on the golden ratio.
Architecture has also been created using 

the golden ratio.  The Parthenon, a temple in 
ancient Greece, was built with dimensions of  
the golden ratio. 

The Fibonacci sequence and the golden 
ratio are more than just math ideas. They 
are a tool used in art to create beautiful 
masterpieces. Orthodontist Mark Lowey, at 

The University College Hospital in London did a study taking detailed 
measurements of  models’ faces. He was proving how people find 
people prettier whose faces are closer in proportion to the golden ratio. 
Art and buildings are still built based on Fibonacci and the golden 
ratio. 4

4 https://plus.maths.org/content/golden-ratio-and-aesthetics  
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1 Albarqi, A., Alzaid, E., Al Ghamdi, F., Asiri, S. and Kar, J. (2015) Public Key Infrastructure: A Survey. 
Journal of  Information Security ,6, 31-37.

 

Public Key Infrastructure is a two key encryption system that is 
used to provide authentication and confidentiality in data transmissions 
such as online transactions. The system is made up of  two keys that are 
mathematically related. 

The two keys used in this encryption system are the public key and 
the private key. The public key is available to everyone and is used to 
generate the encrypted message. The private key is only available to 
the person receiving the encrypted message and is used to decrypt the 
message. 

PKI works as follows: two large prime numbers, say P1 and P2,  are 
multiplied to produce some C. The C is then used as the public key, 
which is available to everyone. This is the key that is used to encrypt 
the transmission. P1 and P2 are the private key and must be kept secret 
because it is used to decrypt the transmission.1 

Public Key Infrastructure: 
Securing the Virtual World

Tikva Nabatian
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The security of  the system rests on the difficulty of  prime 
factorization. Meaning it is difficult to discover the private key from the 
public key because given some C there is no simple and fast method 
for factoring out P1 and P2. This makes PKI a reliable system for 
confidential transactions, such as buying clothing online and sending 
classified documents. 2 

2 Crow, Jerry. Prime Numbers in Public-Key Cryptography. Rep. SANS Institute, 2003. Print.
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We’re pretty much dependent on 
GPS (Global Positioning Systems) 
to get basically anywhere. The entire 
GPS system relies on geometry and 
algebra to calculate position, specifically 
through systems of  equations and a 
process called “trilateration.”  

There are 32 GPS satellites1 orbiting 
12,551.7 miles above the Earth.2 Those 
satellites send down radio signals 
containing the satellite’s position and 
the time at which the signal was sent.3 

The radio signals travel at the speed of  light (186,282 miles per second)4, 
though the Earth’s atmosphere does slow them down. The receiver 
compensates for this by taking the interference from the average 
atmospheric density and thickness into account when calculating the 
amount of  time between when the satellite sent the signal and when 
the receiver picked up the signal.5 Multiplying the time at which the 
signal was sent by the speed of  the signal gives the distance between 
the satellite and the receiver picking up the signals.6 That distance forms 
the radius of  an imaginary sphere.    

The intersection of  two spheres is generally a circle (unless it is a 
single point). A third intersection sphere will intersect that circle at one 
or two points.7 The receiver uses three signals to form three intersecting 
imaginary spheres, narrowing down its position to two possibilities, 
and a fourth signal forming a fourth intersecting imaginary sphere is 

Navigating Intersections:
The Math of  GPS

Shoshana Rosenthal

1 http://tycho.usno.navy.mil/gpscurr.html
2 http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/
navservices/gnss/faq/gps/
3 https://www.math.hmc.edu/funfacts/ffiles/10002.2-8.shtml
4 http://www.gps.gov/multimedia/tutorials/trilateration/
5 http://www.maa.org/sites/default/files/pdf/cms_upload/Thompson07734.pdf
6 http://www.maa.org/sites/default/files/pdf/cms_upload/Thompson07734.pdf
7 https://www.math.hmc.edu/funfacts/ffiles/10002.2-8.shtml
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usually enough to pinpoint the exact position of  the receiver: the point 
at which all four imaginary spheres intersect.8  

This system requires the clocks on all of  the satellites and on the 
receiver to be perfectly synchronized. Since the clock on the receiver 
is often not aligned with those on the satellites, the receivers account 
for the error using algebra. The receiver’s clocks error is represented 
by ε. Positive ε means that the receiver’s clock is ahead of  the satellites’ 
clocks and negative ε means that the receiver’s clock is behind the 
satellites’ clocks. As long as the same receiver is used, ε will be a 
constant variable, which can be found through a system of  equations. 

Systems of  equations can be solved through substitution, addition 
of  the equations, or matrices. Computers can solve these systems of  
equations very quickly. Once ε is found, it is plugged in and a second 
system of  equations is used to calculate the coordinates of  the receiver’s 
location.9

Before the last century, accurate navigation involved applying a lot 
of  trigonometry, but the advent of  GPS receivers doing the math for 
us allows for anyone to navigate with relative ease, even without a map.

8 https://www.math.hmc.edu/funfacts/ffiles/10002.2-8.shtml
9 http://www.maa.org/sites/default/files/pdf/cms_upload/Thompson07734.pdf
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“Cool” Calculus

Newton’s Law of  Cooling states that the rate of  change of  the 
temperature of  an object is proportional to the difference between its 
own temperature and the ambient temperature (i.e. the temperature of  
its surroundings).1 As we proved in AP Calculus when we were learning 
differential equations, this law is a non-standard decay function. It is 
often used by forensic scientists to estimate the time of  death based on 
body temperature upon discovery and the temperature of  the room.

It was discovered when Newton observed the relationship between 
the temperature of  an object and how the temperature decreases based 
on the temperature of  the room around it. He solved the differential

  

to find the function 

  

For instance, a hot cup of  coffee in a freezer cools fastest when it is 
first put in and the difference between the temperature of  the coffee 
and the freezer is greatest. As the coffee cools and the difference 

1 http://www.ugrad.math.ubc.ca/coursedoc/math100/notes/diffeqs/cool.html

Chaya Sherman

dT
dt

- k(T - Ta )=

T(t) = Ta + (T0 - Ta )e 
-kt
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between the coffee’s temperature and the freezer’s temperature lessens, 
the temperature of  the coffee decreases more and more slowly. 

Newton’s law can also be used to find the temperature of  the 
body at any time following death, when the body’s temperature first 
began to drop. The resulting time is approximate, because scientists 
assume the standard body temperature was 98.6 degrees Fahrenheit, 
and variations in the body’s initial temperature can result in a slightly 
flawed time of  death. 
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As the World Turns
Miriam Wilamowsky

Using a mathematical definition, an ellipse is “a closed plane curve 
generated by a point moving in such a way that the sums of  its distances 
from two fixed points is a constant.”1 In class, we learnt about the 
equations of  ellipses and how to graph them while taking into account 
their distance from the foci. Ellipses have a major application beyond 
the math classroom. The entire galaxy works through a system of  
elliptical motions. The motions of  the planets are elliptical as shown in 
the image below, where the 
Sun is the focus point of  the 
orbit.  

The Earth, and every 
other planet, has two 
constant elliptical rotations. 
The Earth is constantly 
rotating upon its axis, but it 
is also moving around the 
Sun in the same direction 
as its own rotation. It takes 
roughly one day for the 
Earth to rotate about its axis, while it takes a full year for the Earth to 
rotate around the Sun. Because the Earth is rotating upon its axis, in 
order for every spot on Earth to rotate about its axis and yet still come 
back to the same spot with proportion to the Sun, it must turn a little 
extra because of  the Earth’s motion around the Sun. Therefore, the 
Earth turns a little more than once, with respect to the stars (which 
do not rotate about the Sun), in order to complete a full rotation with 
respect to the Sun. The “little bit more” is the exact angle that the 
Earth rotates around the Sun in one day.2 This angle averages a little 
less than one degree and is illustrated in the figure on the next page. 

It takes Earth about four minutes to turn this angle. However, the 
difference is not always the same because the Earth does not move 

1 Merriam-Webster; www.merriam-webster.com
2 Simon Radford; http://www.cso.caltech.edu/outreach/log/NIGHT_DAY/elliptical.htm
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in a circular path around the Sun, rather an elliptical path. It happens 
to be that the Earth is closer to the Sun in January than in July. The 
average difference of  the Earth to the Sun in 93 million miles and the 
difference of  the distance in January and July is three million miles. 
The speed that the Earth rotates on its axis is dependent on the Earth’s 
proximity to the Sun. The closer the Earth is to the Sun the faster its 
speed about its axis. Since the Earth is closest to the Sun in January and 
farthest in July, the Earth is moving faster about its axis in January than 
in July. Therefore, in order for the Earth to return to the same exact 
spot with respect to the Sun each year, the Earth must rotate a little 
more each day in the winter months to return to the same spot with 
respect to each point’s direction to the Sun. This occurs because in the 
winter months the Earth is farther from the Sun and therefore revolves 
around its axis slower so it must rotate a little more each day to make up 
for its slower speed. The opposite applies for the summer months. The 
small amount per day that the Earth must rotate in the winter months 
accumulates to 7.7 minutes. However, the Earth rotates a little less 
each day during the summer months and this decrease accumulates to 
7.7 minutes, as well. So, the increased rotation and decreased rotation 
cancel each other out after a full year.3 Overall, the elliptical motion of  
the orbit affects how the earth rotates and the different movements it 
must make at different times of  the year in order to return to the same 
spot with respect to the Sun each year.

3 Simon Radford; http://www.cso.caltech.edu/outreach/log/NIGHT_DAY/elliptical.htm



Page = 36

“For the things of this world cannot be made known 
without a knowledge of mathematics.”

- Roger Bacon


